

Supporting Information for

Bis(2,2,2-trifluoroethyl)bromophosphonoacetate, a Novel HWE Reagent for the Preparation of (E)- α -Bromoacrylates: A General and Stereoselective Method for the Synthesis of Trisubstituted Alkenes.

Keiko Tago and Hiroshi Kogen*

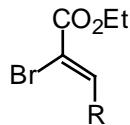
Exploratory Chemistry Research Laboratories
Sankyo Co., Ltd., 2-58, Hiromachi, 1-chome
Shinagawa-ku, Tokyo, 140-8710 Japan

General

Unless otherwise noted, all reactions were carried out in oven-dried glassware under a nitrogen atmosphere. Tetrahydrofuran (THF) was distilled from sodium metal/benzophenone ketyl. Dichloromethane (CH_2Cl_2) was distilled from calcium hydride. All other dry solvents were purchased from Aldrich in SureSeal™ containers. All other commercially obtained reagents were used as received. ^1H NMR and ^{13}C NMR spectra were recorded on a Varian 400 spectrometer. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Infrared spectra were recorded on a JASCO FT-IR-8900 spectrometer. Mass spectra were obtained on a JEOL HX-100, an SX-102A or a JMS-AX-505H mass spectrometer. Analytical TLC was performed on 0.25 mm pre-coated Merck silica gel 60 F_{254} plates. Flash column chromatography was performed on Merck silica gel 60 (230–400 mesh).

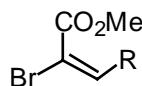
Experimental

Ethyl bis(trifluoroethyl)bromophosphonoacetate 3a


A solution of sodium hydroxide (40.0 g, 1.0 mol) in H_2O (120 ml) was cooled to 0 °C in an ice-salt bath, and bromine (25.5 ml, 0.50 mol) was slowly added stirring over 30 min such that the temperature of the mixture did not exceed 10 °C. Methyl bis(2,2,2-trifluoroethyl)phosphonoacetate (**4**) (50.0 g, 0.13 mol) was added to the solution for 5 min, and the resulting mixture was added H_2O (200 ml) and extracted with chloroform (CHCl_3) (200 ml x 1, 100 ml x 2). The combined organic extracts were washed with H_2O (100 ml x 4), dried over MgSO_4 , and concentrated in vacuo after filtration. The product was distilled under reduced pressure (bp 100–102 °C, 1 mmHg) to obtain methyl bis(2,2,2-trifluoroethyl)dibromophosphonoacetate (41.8 g, 85% yield) as a colorless oil. This dibromide (21.3 g, 44.2 mmol) was dissolved in EtOH (40 ml), and the solution was cooled to –30 °C. A solution of $\text{SnCl}_2 \cdot 2\text{H}_2\text{O}$ (12.9 g, 56.0 mmol) in H_2O (100 ml) was added to the reaction mixture for 40 min such that the temperature did not exceed –25 °C. After addition was completed, the reaction mixture was extracted with CHCl_3 (200 ml x 1, 100 ml x 1, 50 ml x 2). The combined extracts were washed with H_2O (100 ml x 4), dried over MgSO_4 , and concentrated in vacuo after filtration. In order to

remove dibromide and **4**, the residue was purified by flash column chromatography. The column was packed with silica gel (290 g) using a mixture of CH_2Cl_2 (750 ml) and 4N HCl in ethyl acetate (30 ml). After the solvent (CH_2Cl_2 :acetone = 50:1, 500 ml) was flowed through the column, the crude product was applied and eluted (one fraction; 65 ml). Combined fractions (from No. 7 to 20), which contained only **3a**, were concentrated in vacuo. The residue was dissolved in CHCl_3 (300 ml) and washed with H_2O (50 ml x 4), dried over MgSO_4 , and concentrated in vacuo after filtration. The residue was distilled under reduced pressure (bp 85–87 °C, 0.4 mmHg) to obtain **3a** (12.2 g, 70% yield) as a colorless oil: IR (film) ν_{max} 3029, 2966, 1745, 1455, 1440, 1421, 1375, 1301, 1268, 1175, 1102, 1072, 1012, 964, 903, 886, 846, 808, 726, 659, 556, 232, 478, 448 cm^{-1} ; ^1H NMR (400 MHz, CDCl_3) δ ppm: 3.87 (s, 3 H), 4.45–4.60 (m, 5 H); HRMS (FAB) calcd for $\text{C}_7\text{H}_{10}\text{O}_5\text{BrF}_6\text{P}$ ($\text{M}+\text{H}$)⁺ 396.9275, obsd 396.9271; Anal. Calcd for $\text{C}_7\text{H}_9\text{O}_5\text{BrF}_6\text{P}$: C, 21.18; H, 2.03. Found: C, 20.87; H, 2.14.

General procedure of HWE reaction


A solution of **1a** or **3a** (1.1 mmol) and 18-C-6/ CH_3CN (397 mg, 1.2 mmol) in THF (8 ml) was cooled to –78 °C, then 1.0 M potassium *tert*-butoxide solution in THF (1.05 ml, 1.05 mmol) was added to the solution. After stirring for 30 min at –78 °C, aldehyde (1.0 mmol) was added to the reaction mixture and the stirring was continued. When the reaction was completed, a saturated aqueous NH_4Cl was added to the solution and the organic material was extracted with AcOEt . The combined organic extracts were washed with H_2O and brine, dried over Na_2SO_4 , and concentrated in vacuo after filtration. The residue was purified by silica gel flash chromatography to afford methyl α -bromo-acrylate.

The spectrum and analytical data of methyl (Z)- α -bromo-acrylate

R = Ph¹: IR (CHCl_3 soln.) ν_{max} 2985, 2940, 2907, 1719, 1612, 1577, 1492, 1475, 1466, 1447, 1392, 1368, 1340, 1263, 1184, 1095, 1077, 1039, 1000, 989, 969, 928, 882, 866, 850, 808 cm^{-1} ; ^1H NMR (400 MHz, CDCl_3) δ 1.39 (3 H, t, *J* 7.1 Hz), 4.36 (2 H, q, *J* 7.1 Hz), 7.40–7.46 (3 H, m), 7.84–7.87 (2 H, m), 8.22 (1 H, s); ^{13}C NMR (100 MHz, CDCl_3) δ 14.4, 62.8, 113.0, 128.3, 130.0, 130.1, 133.6, 140.6, 163.1.

The spectrum and analytical data of methyl (E)- α -bromo-acrylate

R = Ph²: IR (CHCl_3 soln.) ν_{max} 2954, 1728, 1611, 1576, 1496, 1447, 1435, 1346, 1316, 1289, 1244, 1210, 1183, 1077, 1031, 1018, 1007, 928, 902, 878, 831 cm^{-1} ; ^1H NMR (400 MHz, CDCl_3) δ 3.76 (3 H, s), 7.26–7.38 (6 H, m); ^{13}C NMR (100 MHz, CDCl_3) δ 53.0, 111.1, 128.1, 128.5, 129.0, 134.8, 140.1, 164.8; HRMS (EI) calcd for $\text{C}_{10}\text{H}_9\text{O}_2\text{Br}$ (M)⁺ 239.9786, obsd 239.9788.

R = 4-OMe-Ph: IR (CHCl₃ soln.) ν_{\max} 2954, 2937, 2911, 2841, 1724, 1605, 1575, 1511, 1464, 1437, 1422, 1349, 1300, 1257, 1223, 1206, 1176, 1115, 1033, 1004, 941, 908, 887, 831 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.79 (3 H, s), 3.82 (3 H, s), 6.81 (2 H, d, *J* 9.5 Hz), 7.28 (2 H, d, *J* 9.5 Hz), 7.32 (1 H, s); ¹³C NMR (100 MHz, CDCl₃) δ 53.0, 55.3, 108.7, 113.9, 127.2, 130.2, 132.5, 140.4, 160.3; HRMS (EI) calcd for C₁₁H₁₁O₃Br (M)⁺ 269.9892, obsd 269.9892.

R = 3-OMe-Ph: IR (CHCl₃ soln.) ν_{\max} 2954, 2914, 2839, 1729, 1600, 1579, 1489, 1466, 1456, 1435, 1341, 1292, 1261, 1216, 1184, 1151, 1142, 1087, 1051, 1042, 1019, 1009, 956, 937, 928, 906, 878, 825, 809 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.77 (3 H, s), 3.79 (3 H, s), 6.80–6.89 (3 H, m), 7.23–7.27 (1 H, m), 7.32 (1 H, s); ¹³C NMR (100 MHz, CDCl₃) δ 53.0, 55.2, 111.2, 113.3, 114.8, 120.6, 129.5, 135.9, 139.5, 159.5, 164.9; HRMS (EI) calcd for C₁₁H₁₁O₃Br (M)⁺ 269.9892, obsd 269.9989.

R = 4-NO₂-Ph: mp 80–81 °C; IR (CHCl₃ soln.) ν_{\max} 2955, 1731, 1600, 1525, 1493, 1437, 1348, 1293, 1243, 1184, 1112, 1016, 1003, 882, 861, 850 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.78 (3 H, s), 7.44 (1 H, s), 7.45 (2 H, d, *J* 8.7 Hz), 8.21 (2 H, d, *J* 8.7 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 53.3, 115.2, 123.7, 128.9, 138.2, 141.1, 147.6, 163.9; HRMS (FAB) calcd for C₁₀H₈O₄NBrK (M+K)⁺ 323.9274, obsd 323.9272; Anal. Calcd for C₁₀H₈O₄NBr: C, 41.99; H, 2.82; N, 4.90. Found: C, 41.90; H, 2.96; N, 4.71.

R = 3-NO₂-Ph: mp 79–80 °C; IR (CHCl₃ soln.) ν_{\max} 3089, 2955, 1731, 1611, 1578, 1534, 1480, 1437, 1355, 1311, 1295, 1282, 1243, 1224, 1185, 1101, 1082, 1008, 907, 889, 869, 824 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.80 (3 H, s), 7.44 (1 H, s), 7.54 (1 H, t, *J* 7.8 Hz), 7.61 (1 H, d, *J* 7.8 Hz), 8.19–8.22 (2 H, m); ¹³C NMR (100 MHz, CDCl₃) δ 53.3, 114.6, 123.1, 123.6, 129.4, 134.0, 136.3, 138.1, 163.8, 170.3; HRMS (EI) calcd for C₁₀H₈O₄NBr (M)⁺ 284.9637, obsd 284.9639; Anal. Calcd for C₁₀H₈O₄NBr•1/3 H₂O: C, 41.12; H, 2.99; N, 4.80. Found: C, 40.84; H, 2.72; N, 4.60.

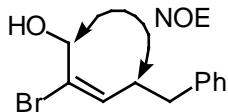
R = cinnamyl: IR (CHCl₃ soln.) ν_{\max} 3083, 2954, 2846, 1713, 1613, 1579, 1568, 1490, 1448, 1436, 1357, 1329, 1316, 1302, 1268, 1246, 1222, 1206, 1189, 1181, 1160, 1146, 1110, 1172, 1045, 1030, 1016, 1000, 986, 975, 938, 910, 882, 852, 810 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.88 (3 H, s), 6.83 (1 H, d, *J* 15.6 Hz), 7.31 (1 H, d, *J* 11.5 Hz), 7.32–7.37 (3 H, m), 7.50–7.52 (2 H, m), 7.81 (1 H, dd, *J* 11.5, 15.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 53.0, 110.3, 124.9, 127.6, 128.8, 128.9, 129.4, 136.0, 141.7, 146.5, 163.3; HRMS (EI) calcd for C₁₂H₁₁O₂Br (M)⁺ 265.9942, obsd 265.9933.

R = furyl: IR (CHCl₃ soln.) ν_{\max} 2954, 2846, 1726, 1595, 1556, 1474, 1457, 1437, 1390, 1349, 1251, 1211, 1183, 1153, 1145, 1093, 1022, 962, 931, 921, 907, 886, 829, 810 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.88 (3 H, s), 6.47 (1 H, dd, *J* 1.9, 3.5 Hz), 7.09 (1 H, d, *J* 3.5 Hz), 7.23 (1 H, s), 7.47 (1 H, d, *J* 1.9, Hz); ¹³C NMR (100 MHz, CDCl₃) δ 53.0, 107.0, 112.4, 115.4, 129.4, 144.3, 149.3, 164.1; HRMS (EI) calcd for C₈H₇O₃Br (M)⁺ 229.9579, obsd 229.9578.

R = phenethyl: IR (CHCl₃ soln.) ν_{\max} 2954, 2929, 2862, 1718, 1611, 1497, 1454, 1437, 1354, 1306, 1247, 1224, 1173, 1087, 1030, 1003, 909, 880, 843, 811 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.75–2.87 (4 H, m), 3.80 (3 H, s), 6.71 (1 H, t, *J* 7.4 Hz), 7.18–7.23 (3 H, m), 7.30 (2 H, t, *J* 7.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 33.0, 34.7, 52.9, 111.3, 126.3, 128.4, 128.5, 140.5, 147.9, 163.2; HRMS (EI) calcd for C₁₂H₁₃O₂Br (M)⁺ 268.0099, obsd 268.0097.

R = geranyl: IR (CHCl₃ soln.) ν_{\max} 2970, 2953, 2930, 2917, 2857, 1708, 1618, 1565, 1436, 1371, 1320, 1246, 1216, 1206, 1185, 1137, 1107, 1043, 1102, 941, 911, 822, 859, 825, 810 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.61 (3 H, s), 1.69 (3 H, s), 1.84 (3 H, s), 2.16 (4 H, m), 3.83 (3 H, s), 5.07–5.10 (1 H, m), 6.86 (1 H, d, *J* 11.7 Hz), 7.42 (1 H, d, *J* 11.7 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 17.2, 17.7, 25.7, 16.4, 40.7, 52.8, 108.3, 121.7, 132.3, 142.4, 151.1, 163.6; HRMS (EI) calcd for C₁₃H₁₉O₂Br (M)⁺ 286.0568, obsd 286.0571.

R = *n*-Bu: IR (CHCl₃ soln.) ν_{\max} 2958, 2931, 2873, 2863, 1717, 1611, 1466, 1458, 1437, 1380, 1352, 1319, 1297, 1250, 1209, 1189, 1134, 1035, 1007, 990, 943, 878, 814, 803 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.91 (3 H, t, *J* 7.3 Hz), 1.31–1.48 (4 H, m), 2.51 (2 H, q, *J* 7.6 Hz), 3.82 (3 H, s), 6.69 (1 H, t, *J* 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 13.8, 22.3, 30.9, 31.2, 52.8, 110.4, 149.5, 163.4; HRMS (EI) calcd for C₈H₁₃O₂Br (M)⁺ 220.0099, obsd 220.0101.


R = Cy: IR (CHCl₃ soln.) ν_{\max} 2932, 2854, 1717, 1610, 1449, 1437, 1363, 1346, 1291, 1267, 1247, 1207, 1187, 1146, 1096, 1005, 964, 932, 903, 879, 811 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.07–1.37 (5 H, m), 1.63–1.77 (5 H, m), 2.91–3.01 (1 H, m), 3.82 (3 H, s), 6.50 (1 H, d, *J* 10.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 25.4, 25.7, 32.1, 40.4, 52.8, 109.1, 154.0, 163.4; HRMS (EI) calcd for C₁₀H₁₅O₂Br (M)⁺ 246.0255, obsd 246.0249.

R = CH₂OBn: IR (CHCl₃ soln.) ν_{\max} 3086, 2954, 2888, 2862, 1715, 1621, 1498, 1454, 1438, 1351, 1317, 1246, 1221, 1211, 1194, 1091, 1029, 987, 909, 879, 830, 811 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.80 (3 H, s), 4.47 (2 H, d, *J* 5.1 Hz), 4.54 (2 H, s), 6.91 (1 H, t, *J* 5.1 Hz), 7.29–7.38 (5 H, m); ¹³C NMR (100 MHz, CDCl₃) δ 53.1, 69.2, 72.9, 110.5, 127.8, 127.9, 128.5, 137.5, 148.0, 163.0; HRMS (EI) calcd for C₁₂H₁₄O₃Br (M+H)⁺ 287.0106, obsd 287.0095.

2-Bromo-5-phenyl-2-pentene-1-ol

A solution of α -bromoacrylates (461 mg, 1.71 mmol) in CH₂Cl₂ (10 ml) was cooled to -78 °C and added DIBAL-H (5.1 ml, 5.1 mmol). The reaction mixture was stirred at -78 °C for 1 hour, then added Na₂SO₄•10H₂O (1.8 g) and warmed up to rt. The mixture was filtrated and the filtrate was concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ethyl acetate = 4:1) to

give allylic alcohol as a colorless oil (362 mg, 88% yield): IR (CHCl₃ soln.) ν_{\max} 3599, 3563, 2931, 2863, 1949, 1873, 1809, 1732, 1644, 1603, 1497, 1454, 1385, 1336, 1247, 1189, 1178, 1091, 1063, 1031m 978, 943, 907, 858 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.39 (1 H, t, *J* 6.7 Hz), 2.44 (2 H, q, *J* 7.6 Hz), 2.71 (2 H, t, *J* 7.6 Hz), 4.09 (2 H, d, *J* 6.7 Hz), 6.04 (1 H, t, *J* 7.6 Hz), 7.17 (2 H, dd, *J* 7.4, 1.4 Hz), 7.22 (1 H, tt, *J* 7.4, 1.4 Hz), 7.31 (2 H, td, *J* 7.4, 1.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 31.5, 35.2, 62.6, 125.3, 126.3, 128.5, 128.6, 133.7, 140.6; HRMS (FAB) calcd for C₁₁H₁₃OB₂K (M+K)⁺ 278.9787, obsd 278.9778.

Compound 6

A solution of allylic alcohol (360 mg, 1.49 mmol) and imidazole (203 mg, 2.98 mmol) in DMF (8 ml) was added TBS-Cl (270 mg, 1.79 mmol) at 0 °C, then the reaction mixture was stirred at rt for 20 min. Water was added to the solution, then the mixture was extracted with ether. The organic layers were washed with water and brine, dried over Na₂SO₄, concentrated in vacuo after filtration. The residue was purified by silica gel flash column chromatography (hexane/ethyl acetate = 20:1) to give **6** as a colorless oil (509 mg, 96% yield): IR (CHCl₃ soln.) ν_{\max} 3087, 2955, 2930, 2898, 2886, 2858, 1733, 1703, 1644, 1604, 1497, 1471, 1464, 1455, 1407, 1390, 1376, 1363, 1257, 1211, 1201, 1173, 1108, 1085, 1041, 1031, 1006, 964, 939, 905, 839 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.07 (6 H, m), 0.89 (9 H, s), 2.42 (2 H, q, *J* 7.7 Hz), 2.68 (2 H, t, *J* 7.7 Hz), 4.19 (2 H, s), 5.99 (1 H, t, *J* 7.7 Hz), 7.14–7.30 (5 H, m); ¹³C NMR (100 MHz, CDCl₃) δ -5.2, 18.4, 25.9, 31.5, 35.4, 63.2, 125.1, 126.1, 128.4, 128.5, 133.2, 140.8; HRMS (FAB) calcd for C₁₇H₂₆OB₂Si (M-H)⁺ 353.0936, obsd 353.0940.

Compound 7

A solution of **6** (100 mg, 0.28 mmol), Pd(PPh₃)₄ (13 mg, 5 mol%), and catalytic amount of 2,4-di-*tert*-butylphenol in THF (3 ml) was added vinyltributyltin (98 μ l, 0.34 mmol), then the mixture was stirred at rt for 3 days. The solvent was removed in vacuo and the residue was purified by silica gel flash column chromatography (hexane/toluene = 15:1) to give **7** as a pale yellow oil (56 mg, 66% yield): IR (CHCl₃ soln.) ν_{\max} 3088, 2956, 2885, 2858, 2804, 1641, 1604, 1496, 1471, 1464, 1454, 1416, 1390, 1362, 1255, 1232, 1222, 1212, 1199, 1080, 1031, 1006, 993, 839, 807 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.06 (6 H, m), 0.88 (9 H, s), 2.50 (2 H, q, *J* 7.5 Hz), 2.70 (2 H, t, *J* 7.5 Hz), 4.26 (2 H, s), 4.99 (1 H, d, *J* 11.0 Hz), 5.30 (1 H, d *J* 17.5 Hz), 5.61 (1 H, t, *J* 7.5 Hz), 6.25 (1 H, dd, *J* 11.0, 17.5 Hz), 7.16–7.20 (3 H, m), 7.27 (2 H, t, *J* 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ -5.2, 18.3, 25.9, 30.0, 35.9, 57.7, 112.4, 125.9, 128.35, 128.41, 133.7, 137.8, 138.8, 141.6; HRMS (FAB) calcd for C₁₉H₂₉OSi (M-H)⁺ 301.1988, obsd 301.1989.

Compound 9

A solution of **8** (105 mg, 0.56 mmol) in THF (1 ml) was cooled to 0 °C and added 0.5 M solution of 9-BBN in THF (2.2 ml, 1.1 mmol), then the reaction mixture was stirred at rt for 4 hours. After addition of water (0.1 ml), the resulting mixture was concentrated in vacuo to give boron reagent. Compound **6** (100 mg, 0.28 mmol), Cs₂CO₃ (165 mg, 0.51 mmol), PdCl₂(dppf)•CH₂Cl₂ (12 mg, 5 mol%), and Ph₃As (9 mg, 10 mol%) were dissolved in DMF (2 ml) and stirred at rt for 10 min. Then the mixture was added the boron reagent and stirred at 50 °C for 2 hours. The reaction mixture was poured into water and extracted with ethyl acetate. The combined organic layers were washed with water and brine, dried over Na₂SO₄, concentrated in vacuo after filtration. The residue was purified by silica gel flash column chromatography (hexane/ether = 50:1) to give **9** as a colorless oil (105 mg, 81% yield): IR (CHCl₃ soln.) ν_{max} 4215, 3086, 2955, 2930, 2898, 2886, 2858, 1732, 1603, 1496, 1471, 1463, 1454, 1406, 1390, 1362, 1256, 1083, 1032, 1006, 967, 938, 854, 839 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.02 (6 H, s), 0.03 (6 H, s), 0.87 (9 H, s), 0.88 (9 H, s), 1.37–1.52 (4 H, m), 2.07 (2 H, t, *J* 7.3 Hz), 2.33 (2 H, q, *J* 7.4 Hz), 2.63 (2 H, t, *J* 7.4 Hz), 3.59 (2 H, t, *J* 6.3 Hz), 4.03 (2 H, s), 5.24 (1 H, t, *J* 7.4 Hz), 7.14–7.20 (3 H, m), 7.26–7.28 (2 H, m); ¹³C NMR (100 MHz, CDCl₃) δ -5.3, -5.2, 18.3, 18.4, 24.4, 25.9, 26.0, 29.5, 32.7, 34.3, 36.3, 60.2, 63.3, 125.3, 125.7, 128.3, 128.5, 139.4, 142.0; HRMS (FAB) calcd for C₂₇H₄₉O₂Si₂ (M–H)⁺ 461.3271, obsd 461.3267.

Reference

1. Rossi, R.; Bellina, F.; Bechini, C.; Mannina, L.; Vergamini, P. *Tetrahedron* **1998**, *54*, 135 and references cited therein.
2. Nakamura, I.; Harada, K. *Heterocycles* **1978**, *9*, 473.